
InfsocSol3
An Updated MATLAB® Package for Approximating the Solution to a
Continuous-Time Infinite Horizon Stochastic Optimal Control Problem

JACEK B. KRAWCZYK & ALASTAIR S. PHARO

Abstract. This paper describes a suite of MATLAB® routines
devised to provide an approximately optimal solution to an
infinite-horizon stochastic optimal control problem. The suite
is an updated version of that described in [1] and [2]. Its rou-
tines implement a policy improvement algorithm to optimise a
Markov decision chain approximating the original control prob-
lem, as described in [3].

2014 Working Paper
School of Economics and Finance

JEL Classification: C63 (Computational Techniques), C87 (Economic Software).
AMS Categories: 93E25 (Computational methods in stochastic optimal control).

Authors’ Keywords: Computational economics, Approximating Markov decision chains.

This report documents 2014 research into
Computational Economics Methods

directed by Jacek B. Krawczyk

Correspondence should be addressed to either:

Jacek B. Krawczyk. Faculty of Commerce and Administration, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand. Fax: +64-4-4635014 Email:
J.Krawczyk@vuw.ac.nz Web page: http://www.vuw.ac.nz/staff/jacek_krawczyk

Alastair S. Pharo. Email: alastair.pharo@gmail.com
*Supported by the Victoria University Research Fund, Award Number 200757.

mailto:J.Krawczyk@vuw.ac.nz
http://www.vuw.ac.nz/staff/jacek_krawczyk
mailto:alastair.pharo@gmail.com


Contents

Introduction 1
1. Basic problem specification 2
2. Options and configuration 3
2.1. Purpose 3
2.2. Options 3
2.3. Configuring InfsocSol 7
3. Solution of an optimal control problem 9
3.1. Purpose 9
3.2. Basic syntax 10
3.3. High-level API 10
3.4. Output 11
4. Determination of optimal control rules 11
4.1. Purpose 11
4.2. High-level interface 11
4.3. Low-level interface 12
5. Simulation of trajectories 13
5.1. Purpose 13
5.2. Implementation 13
5.3. High-level API 13
5.4. Low-level API 14
6. Determination of expected value 14
6.1. Purpose 14
6.2. Syntax 15
7. Loading and saving 15
7.1. Purpose 15
8. Using multiple CPUs 16
9. Large problems and sparse matrices 17
10. Tweaking optimizer settings 17
Appendices 19
A. Simple example of usage 19
A.1. Optimisation Problem 19



A.2. Solution Syntax 20
A.3. Retrieving results using the high-level API 20
A.4. Adding Constraints 24
B. An example of usage with a fisheries problem 28
B.1. Basic model 28
B.2. The fisheries problem in InfsocSol 30
B.3. Solving the fisheries problem 32
B.4. Checking the results 32
B.5. Adding stochastic noise 33
C. Changes since version 2 37
C.1. Legacy API 37
D. Octave support 37
References 38
List of Figures 39
Index 40



Introduction

Computing the solution to a stochastic optimal control problem is difficult. A method
of approximating a solution to a given infinite horizon stochastic optimal control (soc)
problem using Markov chains was outlined in [3] and [4]. This paper describes a suite of
MATLAB®1 routines implementing this method of approximating a solution to a contin-
uous infinite horizon soc problem.
The suite of routines developed updates and extends that described in [2]. Changes since
version 2 of InfsocSol are described in Appendix C. The presentation given here is based
on that given in [6], which describes a similar suite of MATLAB® routines that may be
used to solve finite horizon soc problems.
The method used here deals with discounted infinite horizon stochastic optimal control
problems having the form

min
u

Jpu, x0q “ E

[ ∫ 8

0
e´ρt f

(
xptq, uptq

)
dt
∣∣∣∣xp0q “ x0

]
(1)

subject to

dx “ g
(
xptq, uptq

)
dt ` b

(
xptq, uptq

)
dW(2)

where W is a standard Wiener process. In the optimisation method, we also allow for
constraints on the control and state variables (local and mixed).
Note: Throughout the paper, the dimension of the state space shall be denoted by d, the
dimension of the control by c, and the number of variables which are affected by noise by
N (N ď d).

To solve (1) subject to (2) and local constraints, we developed a package of MATLAB®

functions similar to those introduced in [6]. The package is called InfsocSol and is
composed of four main modules:

1. solution of an optimal control problem (iss_solve)
2. determination of optimal control rules (iss_plot_contrule and iss_odm_control func-

tions);
3. simulation of trajectories (iss_plot_sim and iss_sim functions); and
4. determination of expected value (iss_plot_valgraph and iss_sim functions).

InfsocSol offers both a “high-level” and a “low-level” api, depending on the needs and
preferences of the user. The former is oriented towards interactive or analytic usage. It
is intended to be quick to get going with, and requires fewer lines of code. The latter are
provided to enable embedding of InfsocSol into other software.2

In the solution module, the iss_solve function provides a single interface for computing
approximate numerical solutions to soc problems. Its uses a policy improvement algo-
rithm to optimise a Markov decision chain approximating the original control problem,
as described in [3]. The resulting solution can then be stored to disk for later analysis
(using the ProblemFile configuration setting; see Section 2), or used directly.

1See [5] for an introduction to MATLAB®.
2An example of such embedding is VIKAASA; see [7].

1



In the optimal control module, the solution is used to determine the continuous-time,
continuous-state control to apply for a given situation. The low-level interface provides a
function (iss_odm_control) that takes a state-space point and returns the optimal control
for that point. The high-level interface (iss_plot_contrule) plots a graph showing how the
control rule is affected by system state.
In the simulation module the control rule is used to simulate trajectories from a given
start state, optionally perturbed by random noise. The high-level api provides a function
(iss_plot_sim) that plots time profiles showing how the values of the system’s state-space
points and controls vary over as the system evolves. The low-level api provides direct
access to simulation data via iss_sim.
In the value determination module, a high-level function (iss_plot_valgraph) is provided
for plotting changes to the system’s expected value, as the initial conditions change. It
uses the simulation module to determine expected value.

1. Basic problem specification

In order to run InfsocSol, it is necessary to define your problem. There are four basic
details that InfsocSol requires:

DeltaFunction is a function that represents the problem’s equations of motion.3
‚ If the problem is deterministic, the function should return a vector of length

d corresponding to the value of g
(
xptq, uptq

)
.

‚ If the problem is stochastic then the function should return a vector of length
2d, the first d elements of which are g

(
xptq, uptq

)
and the second d elements

of which are b
(
xptq, uptq

)
. If some of the variables are undisturbed by noise,

(i.e., N ă d), then the variables for which the diffusion term is constantly 0
must follow those that are disturbed by noise.

In either case the function should have a signature of the form

function Value = Delta(Control, StateVariables, Time)

where Control is a vector of length c, StateVariables is a vector of length d, and
Time should be ignored. The Time argument is included in order to allow reuse
of function files between InfsocSol and the finite-horizon SOCSol4L package (see
[6]).

CostFunction is a function giving the instantaneous cost function f
(
xptq, uptq

)
.4

The function should have a signature of the form

3Functions can be passed to InfsocSol in any format that feval accepts. That is, strings representing
function names, function handles or “inline” (anonymous) functions, as created with the inline command.
Note however that because the the high-level api works by saving and loading data to disk, some function
formats may not work as well as others. For this reason, it is suggested throughout this manual to write
your functions in stand-alone files that are in the MATLAB® path, and to pass functions to InfsocSol as
plain strings. See Section 7 for more information, and Appendix A for an example using string function
names.

4A maximisation problem can be converted into a minimisation problem by multiplying the perfor-
mance criterion by ´1. Consequently, if the soc problem to be solved involves maximisation, the negative
of its instantaneous cost should be specified in CostFunction.

2



function Value = Cost(Control, StateVariables, Time, Conf)

where Control is a vector of length c and StateVariables is a vector of length d. As
with the DeltaFunction, Time should be ignored.
The third argument, Conf, is a configuration data-structure which can be accessed
if the cost function needs to make use of other information – see Section 2 for more
details. As with the DeltaFunction, it is possible to reuse cost functions written for
InfsocSol in SOCSol4L (see [6]), but because SOCSol4L does not pass in a Conf
parameter, you will need to use a varargin term.

StateLB is a row vector of length d giving the lower bounds of the rectangular area over
which solutions to the soc problem will be sought.

StateUB is a row vector of length d giving the upper bounds corresponding to those lower
bounds given by StateLB. It must be the same length as StateLB.

By default, the search space given by StateLB and StateUB is discretised (as described in
Section 3) into 11d points. The number of points can however be changed by way of the
StateStepSize configuration setting. See Section 2 for more details.
The solution can be disturbed close to the state boundaries StateLB and StateUB. Conse-
quently, these should be chosen “generously.” Of course, larger state grids require greater
computation times.

2. Options and configuration

2.1. Purpose. All the modules in InfsocSol accept a common set of options. In the
low-level api, these options are managed using the iss_conf function. In the high-level
api, these options are specified once using the iss_solve command, and are then saved to
disk. Any option that is not specified will get a default value, so it is not necessary to
specify any of these options unless the default is not satisfactory.

2.2. Options. A full list of options follows, with defaults given in parentheses. Some
options are only useful in very particular applications.

2.2.1. Options passed to fmincon. InfsocSol uses fmincon to perform numerical optimisa-
tion. These options are either passed directly as parameters to fmincon, or are passed as
options via optimset.
See Optimization Toolbox: fmincon in MATLAB® help for further information about
many of these options.

A, b, Aeq, beq (all [ ]). A and b allow for the imposition of the linear inequality con-
straint(s) Au ď b on the control variable(s). In general, A is a matrix and b is
a vector. If left empty (i.e., [ ]). then the problem is treated as having no linear
inequality constraints on the control variable(s).
Aeq and beq allow for the imposition of the linear equality constraint(s) Aeq ¨ u “

beq on the control variable(s). In general, Aeq is a matrix and beq is a vector.
If left empty (i.e., [ ]). then the problem is treated as having no linear equality
constraints on the control variable(s).

3



UserConstraintFunctionFile ([ ]). A reference to a MATLAB® function representing the
problem constraints (in particular, non-linear problem constraints). This param-
eter corresponds to the nonlcon parameter in fmincon. Although any function
handle can be used, it it recommended to pass a string containing the function
name (no .m extension), as for DeltaFunction.
This function should return the value of inequality constraints as a vector Value1
and the value of equality constraints as a vector Value2, where inequality con-
straints are written in the form k

(
u, x

)
ď 0 and equality constraints are written

in the form keq
(
u, x

)
“ 0.

The function should have a header of the form

function [Value1, Value2] = Constraint(u, x, Conf)

where u is a vector of length c, x is a vector of length d, and Conf is a configuration
data-structure as described in Section 2.3. This means that all options (including
default values) can be accessed via Conf.Options. For instance it is often helpful
to make use of the time step for the relevant Markov chain time in constraints.
This can be accessed as Conf.Options.TimeStep.
The default value ([ ]) indicates that there are no constraints requiring the use of
a UserConstraintFunctionFile.

DerivativeCheck, Diagnostics, DiffMaxChange, DiffMinChange, Display, LargeScale, MaxIter
, MaxSQPIter, OutputFcn, TolCon, TolFun, TolX, Algorithm, UseParallel. These
options are all passed through to fmincon as options, using the opimset command.
See [5] for more information on what these options do. A description of some of
the more important options, with their default values in InfsocSol are as follows:
1. Display ('off'). This controls fmincon’s display level. The default value is

‘off’ (no display), but Display may also be set to ‘iter’ (display output for each
of fmincon’s iterations), ‘final’ (display final output for each call to fmincon)
and ‘notify’ (display output only if non-convergence is encountered).

2. Diagnostics ('off'). This controls whether fmincon prints diagnostic infor-
mation about the cost-to-go functions that it minimises.

3. MaxFunEvals (100c). This sets fmincon’s maximum allowable number of func-
tion evaluations. The default value is dependent on the number of controls,
c.

4. MaxIter (400). This sets fmincon’s maximum allowable number of iterations.
It may be set to any natural number.

5. MaxSQPIter (Inf). This sets fmincon’s maximum allowable number of sequen-
tial quadratic programming steps. The default value is 8, but MaxSQPIter
may be set to any natural number.

6. TolCon (1e´6). This sets fmincon’s termination tolerance on constraint vio-
lation. The default value is 10´6, but TolCon may be set to any positive real
number.

7. TolFun (1e´6). This sets fmincon’s termination tolerance on function evalu-
ation. The default value is 10´6, but TolFun may be set to any positive real
number.

8. TolX (1e´6). This sets fmincon’s termination tolerance on optimal control
evaluation. The default value is 10´6, but TolX may be set to any positive
real number.

4



9. Algorithm ('active-set'). This determines the underlying optimisation al-
gorithm used by fmincon. In general, the active´set and sqp algorithms appear
to work well with InfsocSol. The set of available algorithms differs depending
on the version of MATLAB® being used.

10. UseParallel ('never'). This option can be switched on in order to tell fmincon
to use more than one CPU. It is not recommended to turn on this option, as
it is not compatible with InfsocSol’s PoolSize option.

If necessary, it is also possible to set:
11. DerivativeCheck ('off'). This controls whether fmincon compares user-supplied

analytic derivatives (e.g., gradients or Jacobians) to finite differencing deriva-
tives. The default value is ‘off’, but DerivativeCheck may also be set to ‘on’.

12. DiffMaxChange (1e´1). This sets fmincon’s maximum allowable change in
variables for finite difference derivatives. The default value is 0.1, but DiffMaxChange
may be set to any positive real number.

13. DiffMinChange (1e´8). This sets fmincon’s minimum allowable change in
variables for finite difference derivatives. The default value is 10´8, but
DiffMaxChange may be set to any positive real number.

14. OutputFcn ([ ]). A string containing the name (no .m extension) of a file
containing a MATLAB® function that is to be called by fmincon at each of
its iterations. Such a function is typically used to retrieve/display additional
data from fmincon.
See Optimization Toolbox: Function Reference: Output Function in MATLAB®

help for more information on output functions.
For more information on fmincon, and fmincon options in particular, see Optimiza-
tion Toolbox: fmincon and Optimization Toolbox: Function Reference: Optimiza-
tion Parameters in MATLAB® help.

2.2.2. Discretisation. These options control the discretisation of time and space in the
discrete numerical approximation of the real continuous problem.

StateStepSize or States ((StateUB ´ StateLB)/ 10 and 11, respectively). These mutually
exclusive options can be used to determine the number of points in the state grid.
Only one of these options should be given; if both are provided States will take
precedence. Both options are represented as a row vector of length d. If States is
provided, then the number of states in each dimension should be given as a whole
number. If StateStepSize is given, then the distance between points in the state
grid should be given such that the entry corresponding to the ith state variable
exactly divides the difference between the corresponding entries of StateLB and
StateUB. Of course, step size need not be the same for all state variables.

TimeStep (1). The scalar δ to be used when formulating the Markov decision chain
approximating the soc problem (see [3]). As small values of δ are frequently
advantageous and computation time depends predominantly on the size of the
StateStep, a relatively small choice TimeStep is advisable.

2.2.3. Simulation options. These options are used by iss_sim, iss_plot_sim and iss_plot_valgraph
to control InfsocSol’s simulation behaviour. For stochastic control problems, see also

Section 2.2.4.

5



NumberOfSimulations (1). This is the number of simulations that should be performed.
Multiple simulations are normally performed when dealing with a stochastic sys-
tem. Each simulation uses a randomly determined noise realisation (unless this is
suppressed by the UserSuppliedNoise argument).
By default only a single simulation is performed.

LineSpec ('r-'). This specifies the line style, marker symbol and colour of time-paths. It
is a string of the format discussed in the MATLAB® Functions: LineSpec section
of MATLAB® help.
The default value gives a solid red line without markers.

TimepathOfInterest (0). This is an integer between 0 and d ` c (inclusive) that specifies
which time-path(s) iss_plot_sim is to plot. If TimepathOfInterest is passed as zero
iss_plot_sim plots time-paths for all state and control variables. Otherwise, if
TimepathOfInterest is passed the value i ą 0, InfSim plots the time-path of the ith

variable, where state variables precede control variables.
UserSuppliedNoise (´1). This entirely optional argument enables the user to override the

random generation of noise realisations. If UserSuppliedNoise is passed the value 0,
a constantly zero noise realisation is used. Otherwise, UserSuppliedNoise should be
passed a matrix with N columns and a row for each entry of SimulationTimeStep.
A value of ´1 (the default) disables this feature, causing random noise to be
generated instead. See also Section 2.2.4.
Note that NumberOfSimulations should be 1 if UserSuppliedNoise is specified. If
UserSuppliedNoise is left unspecified, iss_sim randomly selects a standard Gaussian
noise realisation for each simulation. Naturally, UserSuppliedNoise has no effect on
deterministic problems.

SimulationEnd (250). The final time value T at the end of simulation. The default value
sets T “ 250.

SimulationTimeStep (ones(1, 250)). This is a vector of step lengths that partition interval
r0, Ts; i.e., their sum should be T.
With more simulation steps there is less error in approximating the equations of
motion using the Euler-Maruyama scheme and in approximating the performance
criterion using the left-hand endpoint rectangle method.
The default value agrees with the default value of SimulationEnd, and partitions
the time interval evenly into 250 blocks of unit-length.

VariableOfInterest (1). A scalar telling iss_plot_contrule and iss_plot_valgraph the index
of the state variable to vary, i.e., numbers like “1” or “2” etc. have to be entered
in accordance with the state variables’ order in the function DeltaFunction. The
control rule profile appears with the nominated state variable along the horizontal
axis.

ScaleFactor (1). A scalar used for plotting expected value graphs using iss_plot_valgraph.
Maximisation problems must have all payoffs replaced by their negatives before
entry into iss_solve, as it assumes that problems require minimisation. Setting the
ScaleFactor to ´1 “corrects” the sign on payoffs for maximisation problems.

2.2.4. Stochastic control options. These options control how InfsocSol behaves when op-
timising and simulating a problem involving a stochastic process.

StochasticProblem (0). This should be set to 1 if your problem is stochastic. The default
value is 0, i.e., the problem is assumed to be deterministic.

6



NoisyVars (d). This should be set to the number N, if N ă d. The default value is d, i.e.,
all variables are assumed to be noisy. If the problem is deterministic, InfsocSol
ignores the value of this option.

NoiseSteps, Noise and NoiseProb (2, [´1, 1] and [1/2, 1/2], respectively). These options
control how InfsocSol determines transition probabilities in stochastic settings
using an Euler-Maruyama approximation (see [3] and [4]). By default InfsocSol
constructs a “two-point” random variable, but could use a different scheme by
altering these values.

2.2.5. Other options.

ProblemFile ([ ]). This is the prefix used to determine the file names to use to save results
from running iss_solve. If specified, two files called <<ProblemFile>>_options.mat
and <<ProblemFile>>_solution.mat will be created upon successful completion
of iss_solve. The former contains all options used to run iss_solve, and the latter
contains the resulting solution. Both files are in MATLAB®’s .MAT format, which
can be opened and inspected using the load function.

DiscountRate (0.9). The scalar ρ.
ControlDimension. (1). This specifies the value c for your problem. It must be given as a

natural number (in a string). The default value is 1, indicating that there is only
one control.

ControlLB and ControlUB (´Inf and Inf, respectively). In general, vectors of lower and
upper bounds (respectively) on the control variables. Setting ControlLB to ´Inf
(the default) indicates a a single control variable with no lower bound. Similarly,
the default value of Inf for ControlUB indicates no upper bound as well. These
vectors must have length of c (i.e., the value of ControlDimension).

Debug (0). If set to 1, iss_solve will output additional information to the MATLAB®

console while running. This can be helpful in trying to understand how a particular
solution is arrived at.

PolicyIterations (25). This specifies the maximum number of value iterations that may be
performed in seeking a solution (see [3]). The default value is 25.

PoolSize (1). This specifies the number of CPUs to employ in running InfsocSol. Any
value higher than 1 requires that MATLAB® have access to the Parallel Computing
Toolbox. See Section 8 for more information.

StoppingTolerance (5*10^(Dimension´5)). This specifies the minimum norm of a “signifi-
cant” policy change, as described in Section 3.4.

TransProbMin (0.01). When using sparse matrices, this is the minimum transition proba-
bility that is considered significant. See Section 9 for more details.

2.3. Configuring InfsocSol. Each function in InfsocSol presents the same uniform
interface for configuration. Any of the options described in Section 2.2 can be set at any
time, regardless of whether they are useful at that stage. For instance, simulation options
can be passed to iss_solve, even though they will not be useful until a simulation function
(e.g., iss_sim) is called.
A configuration data-structure can be created by passing options to iss_conf. The syntax
for this is as follows:

7



Conf = iss_conf(StateLB, StateUB, ...
'Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

where ‘r¨ ¨ ¨ s’ is used to indicate that any number of options can be supplied. Here,
StateLB and StateUB are vectors giving the minimum and maximum state-space points
respectively, as detailed in Section 1.5

It is also possible to obtain a configuration data-structure using only the default options:

Conf = iss_conf(StateLB, StateUB);

An existing configuration data-structure can be altered or augmented by passing it to
iss_conf as follows:

Conf = iss_conf(StateLB, StateUB, OldConf, ...
'Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

or:

Options = struct('Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

Conf = iss_conf(StateLB, StateUB, OldConf, Options);

where OldConf is a configuration data-structure returned from a previous call to iss_conf.
The only difference between the two formats described above is that in the second instance,
a struct has been created and passed through to iss_conf, whereas in the first instance, the
struct is created implicity. In either case, if no additional options are passed, the original
OldConf data-structure will be returned unaltered.
Configuration options can be passed directly to InfsocSol commands. For instance,

iss_sim(InitialCondition, ODM, ...
DeltaFunction, CostFunction, ...
StateLB, StateUB, ...
'Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

For low-level commands, this is generally a short-hand alternative to explicitly building a
data-structure with the given options using iss_conf and then passing that data-structure
to the command in question, as in the following example.

5Note that the resulting Conf object will depend upon the values given for StateLB and StateUB. That
is, it is not advisable to change these values without also re-running iss_conf.

8



Conf = iss_conf(StateLB, StateUB, ...
'Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

iss_sim(InitialCondition, ODM, ...
DeltaFunction, CostFunction, ...
StateLB, StateUB, Conf);

When using the high-level api however (e.g., iss_plot_sim) building a configuration using
iss_conf is not recommended, as the resulting configuration data-structure may override
settings in the file. If this is required for some reason, the in-file configuration should be
loaded first using iss_load_conf, as in the following example.

% Load settings from ProblemFile
[DeltaFunction, CostFunction, StateLB, StateUB, Conf] = ...

iss_load_conf(ProblemFile);

% Augment settings using iss_conf, using StateLB and StateUB from the
% ProblemFile.
Conf = iss_conf(StateLB, StateUB, Conf, ...

'Option1', value1, ...
'Option2', value2, r¨ ¨ ¨ s);

% Pass the augmented configuration to iss_plot_sim.
iss_plot_sim('MyFile', InitialCondition, Conf);

Once a configuration data-structure has been created, all options passed to it (or the
default values where no option was passed) are accessible via the Options field of the
data-structure. For instance, the following retrieves the time-step, h.

% Assuming Conf has already been created/loaded ...
h = Conf.Options.TimeStep;

It is also possible to edit the configuration options in-place, but this is not recommended.
Instead, one should pass the configuration data-structure to iss_conf in order to alter
options.
More details and examples are given in the subsequent sections. Note that because setting
up options will typically span multiple lines, it is easiest to define these arguments in a
script, and then call that script in MATLAB®. See Appendix A for an example of this.

3. Solution of an optimal control problem

3.1. Purpose. This section details using the iss_solve command from InfsocSol to ap-
proximate a solution to a soc problem with a Markov decision chain. When a ProblemFile
option is given, both the configuration (as described in Section 2.3 and the solution are

9



saved to disk, and can hence be subsequently accessed using iss_plot_contrule, iss_plot_sim
and iss_plot_valgraph.

3.2. Basic syntax. iss_solve is called as follows.

[ODM, UOptimal, Value, Errors, Iterations] = ...
iss_solve(DeltaFunction, CostFunction, ...

StateLB, StateUB, Conf);

The parameters and return values are as follows. Unless using the low-level api, the
return values can be ignored.

DeltaFunction, CostFunction, StateLB and StateUB are the core problem details, as de-
scribed in Section 1.

Conf can be a configuration data-structure, a sequence of name-value pairs, or a combi-
nation of these two, as described in Section 2.3. It can also be omitted to use the
default options.

ODM is a cell array containing the optimal control rules for each state in the discretised
state space considered by InfsocSol. It is not usually necessary to view the con-
tents of this struct, but it is needed by low-level functions such as iss_odm_control
and iss_sim. There are c cells in the array, and each cell contains a vector of length
equal to the total number of discretised state space points.

UOptimal is the same data as in ODM, but arranged orthogonally. That is, the number
of cells in the array is equal to the total number of discretised state space points,
and each cell in the array is a vector of length c.

Value is a vector of length equal to the total number of discretised state space points,
giving the value determination given in the last iteration of iss_solve. For more
information on how to interpret this, refer to [3].

Errors is a vector of length equal to the total number of discretised state space points,
whose value is zero if a feasible solution to the optimisation problem was found at
each point, and one otherwise.

Iterations gives the number of policy iterations used by iss_solve.

3.3. High-level API. If intending to use the high-level api, it is important to specify a
ProblemFile option at this stage. In this case the return values of the call to iss_solve can
be ignored. For instance,

iss_solve(DeltaFunction, CostFunction, ...
StateLB, StateUB, ...
'ProblemFile', 'my_problem_file', ...
r¨ ¨ ¨ s);.

where ‘r¨ ¨ ¨ s’ is used to indicate any other options used, as detailed in Section 2. This will
create two .MAT files, my_problem_file_options.mat and my_problem_file_solution.mat,
containing the problem description and the problem solution, respectively. The string '
my_problem_file' can then be used to refer to these files when doing analysis using the
high-level api.

10



3.4. Output. While running, iss_solve will output information the MATLAB® console.
An example of what would be printed is as follows.6

* Iteration #1 ... completed.
* Iteration #2 ... completed; norm: 0.146290; # of differences: 142.
* Iteration #3 ... completed; norm: 0.020000; # of differences: 19.
* Iteration #4 ... completed; norm: 0.000001; # of differences: 8.

´ Norm is less than stopping tolerance of 0.005000; Stopping.

* Final value determination: ´1574.665142
* Number of policy iterations: 4
* Errors: 137
* Error Percentage: 12.580349

Each “iteration” represents an iteration of the policy improvement algorithm (see [3]).
From the second iteration onwards a check is performed to see whether that iteration
resulted in a “significant” change in policy. This is determined by comparing the Euclidean
norm of the the change in policy against a stopping tolerance level, which can be set via
the StoppingTolerance option, and which by default is set to 5 ˆ 10d´5.7 If the change is
less than this stopping tolerance, the algorithm terminates and returns the control policy
determined by the last completed policy improvement round.
The “final value determination” gives the value of Jp¨ ¨ ¨ q in the last point in the discretised
state space.
The number of errors is also displayed. This is the number of states in the state space for
which fmincon returned a Flag value that was not equal to 1. Values that are not 1 are
not necessarily a cause for concern, but if the percentage of such states is high, then it
may be worth checking the Flags value returned by iss_solve to see what is going wrong.
See [5] for more information on how to interpret the individual flag values.

4. Determination of optimal control rules

4.1. Purpose. Having solved a soc problem using iss_solve, InfsocSol can be used to
produce controls for given state-space points.

4.2. High-level interface. iss_plot_contrule produces graphs of the continuous-time,
continuous-state control rule derived from the solution computed by InfsocSol. Each
control rule graph holds all but one state variable constant.
iss_plot_contrule is called as follows.

6If the Debug option is turned on, then this output will contain additional information.
7The norm is calculated as√
(pu1,1,i ´ u1,1,i´1q2 ` ¨ ¨ ¨ ` pu1,n,i ´ u1,n,i´1q2) ` ¨ ¨ ¨ ` (puc,1,i ´ uc,1,i´1q2 ` ¨ ¨ ¨ ` puc,n,i ´ uc,n,i´1q2),

where n is the total number of discretised states under consideration (see 2.2.2), and ua,b,c is the control
policy produced for dimension a, in state b from policy improvement iteration c.

11



iss_plot_contrule(ProblemFile, InitialCondition, Conf);

The parameters in question are as follows.

ProblemFile is a string designating the pair of files saved by iss_solve containing the soc
problem’s details and its solution. See Section 2.2.5 for more information.

InitialCondition is a row vector of length d giving a point in the state space to use for
constructing the plot. The plot will change the variable whose index is given by the
VariableOfInterest option (defaults to 1) from its minimum to maximum value, as
determined by the StateLB and StateUB parameters provided to iss_solve, thereby
drawing a line through the state-space that intersects with InitialCondition.

Conf can be either a configuration data-structure, a sequence of name-value pairs, or it
may be omitted entirely. Any options that are passed will be merged with those
originally passed to iss_solve. See Section 2.3 for more information.
Options that are of particular relevance here are VariableOfInterest, which controls
which variable will be changed, and LineSpec, which controls how the line in the
plot appears. These options can be set at plot time, as shown in the following
example.

iss_plot_contrule(ProblemFile, InitialCondition, ...
'VariableOfInterest', 2, ...
'LineSpec', '+');

If they are not set, then the values passed to iss_solve will be used, or otherwise,
the defaults.

iss_plot_contrule may also be called with a single output argument, as in the following
example.

ContValues = iss_plot_contrule('ProblemFile', InitialCondition, Conf);

In this instance, InfContRule also assigns the output argument the values of the control
rules in the form of an M ˆ c array, where

M “
StateUBVariableOfInterest ´ StateLBVariableOfInterest

StateStepVariableOfInterest
` 1.

That is, the rows of this array correspond to points of the VariableOfInterestth dimension
of the state grid, while its columns correspond to control dimensions.

4.3. Low-level interface. The function iss_odm_control can be used to return a single
control vector for a given state-space point. To do this, it requires the ODM object
returned by iss_solve.

ODM = iss_solve(DeltaFunction, CostFunction, StateLB, StateUB, Conf);
U = iss_odm_control(ODM, MyStateVector, StateLB, StateUB, Conf);

12



The first function call here uses iss_solve to generate a solution to the soc problem. This
solution is then fed into the call to iss_odm_control, along with a row vector MyStateVector
, giving a state-space point.
As explained in Section 2.3, Conf can either be a sequence of name-value pairs, or a
configuration data-structure (or a mixture). Note however that it is necessary to pass the
same values for StateLB, StateUB and Conf to both function calls in order to get sensible
results. For this reason, it is recommended to build an configuration data-structure using
iss_conf.
The return value, U will be a row vector of length c, giving the optimal control policy at
for the given state, according to InfsocSol.

5. Simulation of trajectories

5.1. Purpose. This section describes how to run simulations using the continuous-time,
continuous-state control rule derived from the solution computed by iss_solve. iss_plot_sim
provides a high-level api for plotting time-paths of the state and control variables and

the associated performance criterion values for one or more simulations. iss_sim provides
a corresponding low-level interface for use when embedding simulation functionality in
other MATLAB® code.

5.2. Implementation. The derivation of the continuous-time, continuous-state control
rule from the solution computed by iss_solve requires some form of interpolation in both
state and time. In the effort to keep the script simple the interpolation in state is linear.
States which are outside the state grid simply move to the nearest state grid point. For
times between Markov chain times, the control profile for the most recent Markov chain
time is used.
The differential equation which governs the evolution of the system is simulated by in-
terpolation of its Euler-Maruyama approximation. The performance criterion integral is
approximated using the left-hand endpoint rectangle rule.

5.3. High-level API. iss_plot_sim is called as follows.

SimulatedValue = iss_plot_sim(ProblemFile, InitialCondition, Conf);

The parameters and return value in question are as follows.

ProblemFile is a string containing the name (with no extension) of the problem. This
name is used to retrieve the solution produced by iss_solve from the disk. See
Section 2.2.5 for more information.

InitialCondition is a row vector of length d that contains the initial condition: the point
from which the simulation starts.

SimulatedValue, the return value of the function call, is a vector of the values of the
performance criterion for each of the simulations performed. It can safely be
ignored if not required.
If the problem is stochastic and noise realisations are random, then the average of
the values from a large number of simulations can be used as an approximation to

13



the expected value of the continuous stochastic system (under the continuous-time,
continuous-state control rule derived from the solution computed by iss_solve).
This average is left for the user to compute.

Conf can be either a configuration data-structure, a sequence of name-value pairs, or
it may be omitted entirely. Any options that are passed will be merged with
those originally passed to iss_solve. See Section 2.3 for more information, and
Section 2.2.3 in particular.

5.4. Low-level API. inf_sim is called as follows.

[SimulatedValue, StateEvolution, DeltaEvolution, Control] = ...
iss_sim(InitialCondition, ODM, ...

DeltaFunction, CostFunction, ...
StateLB, StateUB, Conf);

The parameters and return values in question are as follows.

InitialCondition is the the same as described in Section 5.3.
ODM is the solution data-structure returned by iss_solve.
DeltaFunction, CostFunction, StateLB and StateUB give the basic problem specification.

They are described in Section 1.
Conf can either be a sequence of name-value pairs, a configuration data-structure (or a

mixture), or it may be omitted, as described in Section 2.3. Configuration options
of particular relevance to iss_sim are described in Section 2.2.3.

SimulatedValue is a cell-array, each element of which is a scalar giving the value of a
simulation run.

StateEvolution is a cell-array, each element of which is a matrix with d rows giving the
simulation’s trajectory in the state space. Each row of the matrix corresponds
to a state-space point, and the number of columns matches the length of the
SimulationTimeStep option, plus one.

DeltaEvolution is a cell-array, each element of which is a matrix with d rows, each row
giving the value of the problem’s equations of motion a discretised time step, as
specified in SimulationTimeStep. The number columns in each matrix is equal to
the length of SimulationTimeStep.

Control is a cell-array, each element of which is a matrix with c rows, each row giving
the control choice made by iss_sim at a discretised time step, as specified by
SimulationTimeStep. The number columns in each matrix is equal to the length of
SimulationTimeStep.

6. Determination of expected value

6.1. Purpose. This section details the process of computing expected values for the
continuous system (under the continuous-time, continuous-state control rule derived from
the solution computed by iss_solve) as the initial conditions change. Only a high-level api
(iss_plot_valgraph) is provided for this purpose, as expected values are already returned
by iss_sim for low-level use.

14



In a similar spirit to iss_plot_contrule above, it deals with one state variable at a time
(identified by VariableOfInterest), while the other state variables remain fixed.

6.2. Syntax. iss_plot_valgraph is called as follows.

iss_plot_valgraph(ProblemFile, InitialCondition, ...
VariableOfInterestValues, Conf);

The parameters are as follows.

ProblemFile is a string containing the name (with no extension) of the problem. This
name is used to retrieve the solution produced by iss_solve from the disk. See
Section 2.2.5 for more information.

InitialCondition is a vector determining the values of the fixed state variables, as described
in Section 5.3.

VariableOfInterestValues is a vector containing the values of the VariableOfInterest at which
the system’s performance is to be evaluated. VariableOfInterest defaults to 1, but
it can be changed by specifying its value as an option.

Conf can either be a sequence of name-value pairs, a configuration data-structure (or
a mixture), or it may be omitted, as described in Section 2.3. Configuration
options of particular relevance to iss_plot_valgraph are described in Section 2.2.3.
In particular, ScaleFactor can be used to scale the the value graph by a constant.
A negative number can be used to reverse the sign; useful when the “true” problem
involves maximisation.

7. Loading and saving

7.1. Purpose. This section describes low-level functions included in InfsocSol for saving
and loading configuration and solution files. It is usually not necessary to use these
functions directly, unless interacting with the low-level api.

iss_save_conf can be used to save a complete InfsocSol problem description. Usage is as
follows.

iss_save_conf(DeltaFunction, CostFunction, ...
StateLB, StateUB, Conf);

DeltaFunction, CostFunction, StateLB and StateUB are the basic soc problem de-
tails as described in Section 1. Conf is a configuration data-structure, as described
in Section 2.3. Note that unlike elsewhere in InfsocSol, options cannot be provided
directly to iss_save_conf.
This function will find the ProblemFile option in the configuration file, and save to
a file called <<ProblemFile>>_options.mat in .MAT format.

iss_load_conf can be used to restore a soc problem previously saved using iss_save_conf.
Usage is as follows.

[DeltaFunction, CostFunction, StateLB, StateUB, Conf] = ...
iss_load_conf(ProblemFile);

15



As elsewhere, ProblemFile should be a string giving only the prefix part of the
file name (i.e., omitting the _options.mat part). The values returned should be
identical to the ones passed to iss_save_conf.
Note that MATLAB®’s behaviour when loading data involving anonymous or in-
line functions is not well understood by the authors. It appears to be necessary at
least to have the file where the functions were defined present in the MATLAB®

path, but there may be additional requirements. This can be a source of prob-
lems if attempting to use the iss_save_conf and iss_load_conf functions with a
DeltaFunction or a CostFunction that is not defined in its own file. To avoid these
issues it is recommended always define these functions as separate files, and to re-
fer to them using strings, (e.g., 'MyCostFunc) rather than function handles (e.g.,
@MyCostFunc).

iss_save_solution is used by iss_solve to save the solution from a successful run into a file.
Using this function, one could potentially override a solution provided by iss_solve
and then use that solution with the other functions provided in InfsocSol, such
as iss_sim or iss_plot_valgraph. Usage is as follows.

iss_save_solution(ODM, Conf);

ODM should be a cell array as described in Section 3.2, and Conf should be a
configuration data-structure created by iss_conf, as defined in Section 2.3. The
solution will be saved to a file called <<ProblemFile>>_solution.mat in .MAT
format, where ProblemFile should be given via an option in the configuration data-
structure.

iss_load_solution can be used to retrieve the solution to an soc problem previously solved
using iss_solve. Usage is as follows.

ODM = iss_load_solution(Conf);

The file to be loaded will be given by the ProblemFile option in the Conf configu-
ration data-structure.

8. Using multiple CPUs

InfsocSol provides the ability to utilise multiple cpus in parallel using the PoolSize option
(see Section 2.2). In MATLAB®, this uses the parfor loop construct, and requires that
the MATLAB® Parallel Toolbox be available.
Using parallel processors can significantly reduce the amount of time needed to run
iss_solve and iss_sim (and other high-level functions that depend on iss_sim). However,
it is important to note that it comes at the cost of increased memory usage. For problems
with very large numbers of state space points to consider, memory usage can become
as much of an issue as computation time, so it is important to be aware of both when
deciding how many processors to use.
Under MATLAB®, InfsocSol will start and stop a worker pool automatically if one is not
already running. It is worth noting that starting and stopping the worker pool involves
a time penalty, and as such for smaller problems, using the worker pool may actually

16



increase the amount of time needed to run InfsocSol. In our experience, this trade-off is
worthwhile once a problem involves more than approximately 200 states.
If a worker pool is already running, InfsocSol will attempt to detect whether it is running
as the master process or as a worker process. In the former case, the parallel functionality
will be enabled using the existing worker set-up. This means that the number of workers
may not correspond to the PoolSize option. If running in a worker process, InfsocSol
will behave as if it is running on a single cpu, as it is not possible for workers to spawn
more workers in MATLAB®. Whenever a worker pool is already running when InfsocSol
starts, it will not attempt to shut it down upon completion. This means that InfsocSol
can be embedded within other software that is already managing the worker pool without
conflict.
Under Octave, worker processes are not used to enable parallel functionality, and parallel
processing can be used to advantage regardless of how small the state grid is.

9. Large problems and sparse matrices

InfsocSol will automatically start using sparse matrices for certain operations in iss_solve
when necessary.8 If this happens, a message is displayed on the MATLAB® console. This
is done in order to avoid exceeding MATLAB®’s size limitations with normal matrices.
When sparse matrices are in use, the TransProbMin option becomes significant. Reducing
this number will increase the accuracy of the soc solution, but at the cost of using more
memory.
The overall largest possible problem that could be analysed using InfsocSol is platform-
dependent. The largest data structure that InfsocSol needs to create is matrix that is
s-by-s, where s is the total number of discretised state-space points. Hence, the maximum
problem size is probably close to or equal to the largest square sparse matrix that can be
created.

10. Tweaking optimizer settings

When running iss_solve a policy improvement algorithm is used to approximate the op-
timal control solution to the problem, as described in [3]. Due to the numerical nature
of routines such as fmincon however, iss_solve may in some cases require some tweaking
in order to converge on the optimal solution, or in order to reach a sufficiently smooth
approximation. The following example shows a transcript from an iss_solve run in which
the solution failed to converge.

* Iteration #1 ... completed.
* Iteration #2 ... completed; norm: 0.335982; # of differences: 354.
* Iteration #3 ... completed; norm: 0.779021; # of differences: 143.
* Iteration #4 ... completed; norm: 0.203272; # of differences: 44.
* Iteration #5 ... completed; norm: 0.434971; # of differences: 27.
* Iteration #6 ... completed; norm: 0.476361; # of differences: 21.

8This depends on the platform that InfsocSol is running on. InfsocSol automatically falls back to
using sparse matrices when an ordinary matrix of the required size cannot be created.

17



* Iteration #7 ... completed; norm: 0.437835; # of differences: 20.
* Iteration #8 ... completed; norm: 0.586157; # of differences: 23.
* Iteration #9 ... completed; norm: 0.396332; # of differences: 18.
* Iteration #10 ... completed; norm: 0.440907; # of differences: 19.
* Iteration #11 ... completed; norm: 0.479186; # of differences: 18.
* Iteration #12 ... completed; norm: 0.482928; # of differences: 25.
* Iteration #13 ... completed; norm: 0.556201; # of differences: 27.
* Iteration #14 ... completed; norm: 0.479499; # of differences: 23.
* Iteration #15 ... completed; norm: 0.514626; # of differences: 21.
* Iteration #16 ... completed; norm: 0.476361; # of differences: 21.
* Iteration #17 ... completed; norm: 0.481787; # of differences: 15.
* Iteration #18 ... completed; norm: 0.392402; # of differences: 21.
* Iteration #19 ... completed; norm: 0.342140; # of differences: 22.
* Iteration #20 ... completed; norm: 0.553498; # of differences: 32.
* Iteration #21 ... completed; norm: 0.540119; # of differences: 23.
* Iteration #22 ... completed; norm: 0.320200; # of differences: 23.
* Iteration #23 ... completed; norm: 0.553407; # of differences: 24.
* Iteration #24 ... completed; norm: 0.481787; # of differences: 19.
* Iteration #25 ... completed; norm: 0.569868; # of differences: 24.

* Final value determination: 6278.387249
* Number of policy iterations: 25
* Errors: 56
* Error Percentage: 14.000000

* All iterations were used.

Here the norm of control changes does not significantly reduce from one iteration to
the next. Another problem that can arise is that iss_solve appears to converge, but
examination of the solution shows that it is “jaggy” – that is, it contains large noticable
imperfections.
Both of these issues can usually be resolved by changing some of the options that are
fed into the optimizer. In our experience the two most important options are TolFun and
MaxFunEvals. The former may need to be made smaller (i.e. the tolerance may need to
be tightened) than its default value of 10´6, whereas the latter may need to be increased
from its default value of 100. Changing these values may make iss_solve slower, however,
so they should only be altered when the default values are insufficient. Appendix A below
shows an example of such tweaking.

18



Appendices

A. Simple example of usage

This example corresponds to that given in the appendix of [6] (and to Example 2.3.1 of
[8]), but with discounting and an infinite horizon.

A.1. Optimisation Problem. The optimisation problem is determined in R1 by

min
u

Jpu, x0q :“
1
2

∫ 8

0
e´ρt(uptq2 ` xptq2)dt(3)

subject to
ẋ “ u, and(4)

xp0q “
1
2

.(5)

This is a linear-quadratic problem whose optimal solution exists without discounting.
However, for consistency, here we solve a discounted problem with the discount rate
ρ :“ 9

10 , giving a discount factor of e´ρ “ 0.4066 (4 s.f.).
A Markovian approximation to this problem is to be formed and then solved. The opti-
misation call for the routine that does this is iss_solve(¨ ¨ ¨), where the arguments inside
the brackets are the same as those of Section 3.2. Details of the specification of these
arguments for this example are given below.
The following functions are defined by the user and saved in MATLAB® as .m files in
locations on the path. Each file has a name (for example Delta.m), and consists of a
header, followed by one (or more) commands. For this example we have:

DeltaFunction. This is called, for example, Delta.m and is written as follows.9

function v = Delta(u, x, t)
v = u;

CostFunction. This is called Cost.m and is written as follows.

function v = Cost(u, x, t, Conf)
v = (u^2 + x^2)/2;

The parameters used in iss_solve are described in Section 2. In this example they are
specified as follows.

StateLB and StateUB: For this one-dimensional Linear-Quadratic problem we give 0 and
0.5 respectively. This is because it is anticipated that the state value will diminish

9It is also possible to specify functions in InfsocSol as inline or anonymous functions, for instance,
Delta = @(u,x,t)u; or Delta = inline('u','u','x','t');. However, when using the high-level interface,
inline functions affect the robustness of the saved .MAT files, so they are not recommended. They are
however perfectly fine to use with the low-level interface.

19



monotonically from 0.5 to a small positive value. Consequently smaller or larger
values than these are unnecessary.

StateStepSize: This is given a value of 0.01, making the discrete state space the set
{0, 0.01, 0.02, …, 0.49, 0.5}.

TimeStep: Given by the scalar 0.02.
DiscountRate: This is given a value of 0.9. This is the default.
ProblemFile: This is the name for the files that the results are to be stored in, say '

TestProblem'.
ControlLB and ControlUB: As the control variable is unbounded (which is the default),

these options are not specified.

A.2. Solution Syntax. Consequently iss_solve could be called in MATLAB® as follows:

iss_solve('Delta', 'Cost', 0, 0.5, ...
'StateStepSize', 0.01, ...
'TimeStep', 0.02, ...
'DiscountRate', 0.9, ...
'ProblemFile', 'TestProblem');

'TestProblem' is just the prefix part of the names of the two result files saved by iss_solve
and stored for later use (see Section 5, for example).

While the call above is clear for such a simple problem, it is preferable to write MATLAB®

scripts for more involved problems. For this example, a script could be written as follows.

StateLB = 0;
StateUB = 0.5;
Conf = iss_conf(StateLB, StateUB, ...

'StateStepSize', 0.01, ...
'DiscountRate', 0.9, ... % not strictly necessary
'TimeStep', 0.02);

% The ’ProblemFile’ option could also have been set using iss_conf.
iss_solve('Delta', 'Cost', StateLB, StateUB, Conf, ...

'ProblemFile', 'TestProblem');

If this script were called work_space.m and placed in a directory visible to the MATLAB®

path, it would then only be necessary to call work_space in MATLAB®.
In each case, the .m extensions are excluded from the file names.

A.3. Retrieving results using the high-level API. The high-level api provides three
types of figures: control versus state policy rules, state and control time-paths, and value
graphs.

20



A.3.1. Control vs. state. The MATLAB® routine iss_plot_contrule is used to obtain a
graph of the control rule from iss_solve’s solution. The following values are specified for
the parameters described in Section 4.2.

ProblemFile: As above, this is: 'TestProblem'.
InitialCondition: As there is no need to hold a varying variable fixed, this condition does

not matter in a one-dimensional example, where we only have one state variable
(namely VariableOfInterest) to vary. Consequently, this is set arbitrarily to 0.5.

VariableOfInterest: This is set to 1 (the default), as there is only one state variable to
vary. If this example had more than one state dimension, VariableOfInterest could
be any natural number between 1 and d (inclusive), depending on which dimen-
sion/variable was to be varied.

LineSpec: This is left unspecified, assuming its default of ‘r´'.
LineWidth: This is set to 2 in order to make the line stand out.

Consequently iss_plot_contrule is called as follows.10

iss_plot_contrule('TestProblem', 0.5, 'LineWidth', 2);

This produces the red line in the graph of control rules shown in Figure 1 below.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

u 1

x
1

 

 
InfSOCSol control rule
Theoretical optimal control

Figure 1. Optimal and approximated control rules for a simple uncon-
strained problem.

The control produced clearly approximates the theoretical optimal control, but suffers
from some “jagginess”. In order to rectify this, we can run iss_solve again with a tighter
TolFun setting and a larger MaxFunEvals setting, as described in Section 10. This will
allow the optimizer to take slightly longer in order to find a smoother solution.

10Note that in this graph the optimal solution is presented as a dashed line, while our computed
control rules are presented as solid lines. This convention is followed for subsequent graphs.

21



iss_solve('Delta', 'Cost', 0, 0.5, ...
'StateStepSize', 0.01, ...
'TimeStep', 0.02, ...
'DiscountRate', 0.9, ...
'ProblemFile', 'TestProblem', ...
'TolFun', 1e´8, ...
'MaxFunEvals', 400);

Repeating our plotting command with the new solution file yields a smoother line, as
shown in Figure 2. Note that the blue line is obtained on setting StateStepSize and
TimeStep to 0.1 and 0.2 respectively and rerunning iss_solve.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

u 1

x
1

 

 
StateStepSize = 0.1, TimeStep = 0.2
StateStepSize = 0.01, TimeStep = 0.02
Theoretical optimal control

Figure 2. Optimal and approximated control rules for a simple uncon-
strained problem with reduced jagginess.

A.3.2. State and control vs. time. The files TestProblem_options.mat and TestProblem_solution
.mat are used to derive a continuous-time, continuous-state control rule. The system is
then simulated using this rule. We use the MATLAB® routine iss_plot_sim with the
following values for the parameters and functions described in Section 5.3.

ProblemFile: This is 'TestProblem' as before.
InitialCondition: As the simulation starts at x0 “ 0.5, this is specified as 0.5.
SimulationTimeStep: For 10000 equidistant time steps each of size 0.01 this can be specified

as ones(1,10000)/1000. This determines a horizon of length 10. In order to obtain
a good approximation for the problem, it is necessary to choose a horizon for which
the system has effectively become stationary and costless. The flattening of the
time-paths in Figure 3 indicates that 10 is sufficiently large in this case.

NumberOfSimulations, LineSpec and UserSuppliedNoise: These are not passed, as the de-
fault values suffice.

22



Consequently iss_plot_sim is called as follows.

SimulatedValue = ...
iss_plot_sim('TestProblem', 0.5, ...

'SimulationTimeStep', ones(1,10000)/1000);

SimulatedValue gives the simulated value of the performance criterion. This is 0.08090 (4
s.f.) with the choice of parameters given here, which compares favourably with the actual
performance criterion

min
u

J
(

u,
1
2

)
“

5
18 ` 2

√
481

“ 0.08082 (4 s.f.).

iss_plot_sim also produces the red lines in the graphs of time-paths shown in Figure 3
below.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

x

 

 

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

u

t

 

 

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

Figure 3. Optimal and approximated trajectories for a simple uncon-
strained problem.

A.3.3. Value vs. state. Finally, the routine iss_plot_valgraph computes the expected value
of the performance criterion for the continuous system as the initial conditions vary. This
routine has the following values for the parameters described in Section 6.2.

ProblemFile and InitialCondition: These are given the same values as the corresponding
arguments in Section A.3.2 above.

VariableOfInterestValues: This vector determines for what values of the variable of interest
the performance criterion should be calculated. In this example, 0:0.05:1 is used.

SimulationTimeStep: For 10000 equidistant time steps each of size 0.1 this can be specified
as ones(1,10000)/1000.

NumberOfSimulations, VariableOfInterest and ScaleFactor: These are not passed, as the
default values suffice.

23



Hence iss_plot_valgraph is called as follows.

iss_plot_valgraph('ProblemFile', 0.5, 0:0.05:1, ...
'SimulationTimeStep', ones(1,10000)/1000);

This produces the graph shown in Figure 4 below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

m
in

u J
(u

, x
0)

x
0

 

 

StateStep = 0.1, TimeStep = 0.2
StateStep = 0.01, TimeStep = 0.02
Theoretical

Figure 4. Optimal and approximated value functions for a simple uncon-
strained problem.

A.4. Adding Constraints. We will explain the syntax when constraint enforcement is
necessary.

A.4.1. Allowing for control constraints. In the previous example we did not allow for
control constraints, luckily it is not difficult to do so. For example, if we need to add
a constraint for the lower bound of the control we follow the same method as before.
However, now when calling iss_solve we append an extra option, ContolLB. For this new
example the lower bound for the control is ´0.2.11 So, the iss_solve call is as follows:

iss_solve('Delta', 'Cost', 0, 0.5, ...
'StateStepSize', 0.01, ...
'TimeStep', 0.02, ...
'DiscountRate', 0.9, ...
'ProblemFile', 'TestProblem', ...
'ControlLB', ´0.2);

This will produce then produce the following graphs starting from the control rules shown
in Figure 5.

11If for example it was ´0.4 there would be no change to the graph; see the values of u in Figure 3
that are contained in approximately r´0.3, 0s.

24



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

u
1

x
1

 

 

Original Data
Data with added −0.2 Control Constraint

Figure 5. Approximately optimal control rules with a control constraint.

The following time-paths graph (see Figure 6) clearly shows what effect the control con-
straint of ´0.2 has on the original profile.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

x 1

 

 

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

u 1

t

 

 

Original Data
Data with added −0.2 Control Constraint

Original Data
Data with added −0.2 Control Constraint

Figure 6. Approximately optimal state and control time profiles with a
control constraint.

Lastly the value function’s graph is shown in Figure 7.

25



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a

lu
e

x
1

 

 

Original Data
Data with added −0.2 Control Constraint

Figure 7. Approximately optimal value function with a control constraint.

A.4.2. Allowing for state constraints. Problems with state constraints may also be en-
countered but are also simple to implement. Firstly we need to create a constraint function
for the UserConstraintFunctionFile option.12

Suppose we want to enforce x ě 0.1. Then we would write a function like the following.

function [c, ceq] = Constraint(u, x, h, Conf)
c = ´(x + h*u) + 0.1;
ceq = [ ];

The easiest way for InfsocSol to find this function is for it to reside in a file with the
same name (plus a .m extension) in the MATLAB® path). Accordingly, we will place the
above function into a file called Constraint.m.
Now we are ready to solve our original problem with the added state constraint. We call
iss_solve as follows, with the additional UserConstraintFunctionFile option. 13

iss_solve('Delta', 'Cost', 0, 0.5, ...
'StateStepSize', 0.01, ...
'TimeStep', 0.02, ...
'DiscountRate', 0.9, ...
'ProblemFile', 'TestProblem', ...
'ControlLB', ´0.4, ...
'UserConstraintFunctionFile', 'Constraint');

12Unlike other function options in InfsocSol, this function has two return values, and so cannot be
written as an inline or anonymous function.

13Please note that when calling iss_solve in this example the lower control bound is set to ´0.4 and
not ´0.2

26



It should also be noted that in the following graph the StateStepSize and TimeStep options
have been changed to 0.005 and 0.025, respectively, to produce smoother line of the control
rules as shown in Figures 8–10 below.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.3

−0.2

−0.1

0

0.1

0.2
u 1

x
1

 

 
Original data
Added constraint with StateStep 0.005
and TimeStep 0.025

Figure 8. Optimal and approximated value functions with a state constraint.

iss_plot_sim is called as per the previous example. With our current constraints it pro-
duces time-paths shown in Figure 9 below.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

x 1

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

u 1

t

 

 

Original Data
Added constraint with StateStep 0.005
and TimeStep 0.025

Figure 9. Approximately optimal state and control time profiles with a
state constraint.

iss_plot_valgraph is also called as per the previous example, producing the optimal and
approximated value functions in Figure 10 below.

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V
al

ue

x
1

 

 

Added constraint with StateStep 0.005
and TimeStep 0.025
Original Data

Figure 10. Optimal and approximated value functions with a state constraint.

B. An example of usage with a fisheries problem

This problem is adapted from [9], which is in turn adapted from [10]. Some of the results in
[9] are themselves obtained using InfsocSol with VIKAASA (see [7]) to solve a viability
theory problem. Here, this problem has been modified to represent an infinite-horizon
profit-maximisation problem for a fishing fleet.

B.1. Basic model. The elements of the model are as follows:

1. The system is described by of two dynamic variables: fish biomass, xptq and effort,
eptq. Effort is exerted by the fishing fleet to extract the resource (i.e. fish) at time
t. This is a fixed fleet-size model, so there is no variation in capital to consider.
A “catchability coefficient” qx is defined to determine the quantity of biomass that
each unit of effort extracts, relative to the total size of the biomass at the time.
Thus, the harvest rate at time t is

(6) hxptq “ qxeptqxptq.

The product of qx and eptq is generally termed the level of fishing mortality and
it is expressed as a proportion of biomass.

2. Two constraints are given. Firstly, we suppose that a “safe minimum biomass
level” (SMBL), xmin ą 0 has been determined, which the industry’s regulator will
not allow fish stocks to fall below.
The second constraint concerns minimum and maximum levels of effort. The
minimum level emin is determined by social requirements for the preservation of
employment and maintenance of traditional fishing communities. The maximum
level emax is determined not by any normative considerations but rather by the
physical capabilities of the fishing fleet. Given that there is no variation in capital
and labour, it is supposed that maximum effort is constrained by a fixed production
capacity.

3. The fleet’s objective is to maximise their infinite-horizon profit. Profit is given by

(7) πxptq “ pxhxptq ´ ceptq ´ C,

28



where px is the price of a unit of biomass (fixed in this model), and as explained
above, hxptq is the harvest rate, making pxhxptq the fleet’s revenue flow. C is some
fixed cost, and c is a variable cost for each unit of effort.

4. The fleet is able to select the effort level to exert, but effort variation is bounded
by U “ rδ´, δ`s, where δ´ ă 0 and δ` ą 0.

5. Fish population levels xptq are governed by a logistic differential equation,

(8) ẋptq “ rxxptq
(

1 ´
xptq
Lx

)
´ qxeptqxptq.

This equation is based on [11], and is common in models of population growth.
The resource grows at a rate proportional to rx, up to the limit carrying capacity,
Lx of the resource’s ecosystem, less the harvest rate, hxptq “ qxeptqxptq.
The differential equation for e is:

(9) ėptq “ uptq P U “ rδ´, δ`s.

This equation represents bounds on the speed at which the fleet can change fishing
intensity.

The parameter values for the considered model are:
rx “ 0.4(10)
Lx “ 600(11)

xmin “ 60(12)
px “ 4(13)
qx “ 0.5(14)

c “ 10(15)
C “ 150(16)

emax “ 1(17)
emin “ 0.1(18)

δ “ 0.01(19)

With these parameters the differential equations become:

(20) ẋptq “
2
5

xptq
(

1 ´
xptq
600

)
´

1
2

eptqxptq

and:

(21) ėptq P U “

[
´

1
100

,
1

100

]
.

The profit equation is:
(22) πxptq “ 2exptqxptq ´ 10eptq ´ 150.

Finally, the discount rate ρ (see 1) has been reduced for this example from the default value
of 0.9 to just 0.1. This means that the profit-maximising fishing fleet is more “patient”,
in that future profits have a higher present value. This has been added to this problem
in order to simplify it by diminishing the trade-off between maintaining fish stock levels
above the SMBL level in the long term, and exploiting the stock for short-term gain.

29



B.2. The fisheries problem in InfsocSol.

B.2.1. State space. The system state will be represented by a vector of length 2, rxptq, eptqs.
InfsocSol requires a rectangular area over which to seek optimal solutions, given by
StateLB and StateUB. Constraints that we are interested in imposing on the system are
a good place to start in determining these. In this case, those constraints are described
in item 2. in Section B.1. Substituting the values from Equation 11, Equation 12, Equa-
tion 17 and Equation 18, we would have:

StateLB = [60, 0.1];
StateUB = [600, 1];

Note that the upper bound on biomass is because Equation 20 precludes xptq rising above
Lx “ 600.

B.2.2. Equations of motion. We will write the equations of motion for this problem, as
described in Equation 20 and Equation 21 into a file called fisheries_delta.m.

function v = fisheries_delta(u,s,t)
% Extract the named values from the state vector
x = s(1);
e = s(2);

% Equation of motion for biomass
xdot = 0.4*x*(1 ´ x/600) ´ 0.5*e*x;

% Equation of motion for effort
edot = u;

% Combine into a vector
v = [xdot, edot];

end

B.2.3. Instantaneous cost function. InfsocSol needs an instantaneous cost function to
minimise. In fact, we have a profit function to maximise. As described in Section 1, we
can multiply our profit function by ´1 in order to convert our maximisation problem into
a minimisation one suitable for InfsocSol. We will write this cost function into a file
called fisheries_cost.m.

function cost = fisheries_cost(u,s,t,Conf)
% Extract the named values from the state vector
x = s(1);
e = s(2);

% Profit
pi = 2*e*x ´ 10*e ´ 150;

30



% Convert to cost
cost = ´pi;

end

B.2.4. Constraint function. In this section we define a function that specifies the non-
linear constraints to be imposed on the control set, U “

[
´ 1

100 , 1
100

]
. For our purposes,

any constraints that depend on either the system state or the system’s dynamics need to
be specified here. As stated in item 2. of Section B.1, effort levels have been proscribed by
eptq P remin, emaxs “ r0.1, 1s. This means that effort variation, ėptq should be constrained
when “close” to the boundaries of this set. because InfsocSol uses a Euler-Maruyama
approximation, this becomes a matter of determining whether the “next” state lies outside
of r0.1, 1s or not. Thus, the constraint function can be expressed as follows.

function [c, ceq] = fisheries_constraint(u, s, Conf)
% Extract the time´step.
h = Conf.Options.TimeStep;

% Determine the ”next” state. The zero can be ignored.
next_s = s + h*fisheries_delta(u, s, 0);

% Extract the named values from the state vector
x = next_s(1);
e = next_s(2);

% The inequality constraints should be a vector of numbers that are
% negative iff the constraints are satisfied.
c = [0.1 ´ e, e ´ 1, 60 ´ x];

% There are no equality constraints
ceq = [];

end

B.2.5. Other options. We use iss_conf to create a configuration data-structure here, as
described in Section 2.3, in order to hold the other options. We need to set constraints on
the controls, according to Equation 9, and we will decrease the StateStepSize in order to
consider more points. Additionally, we will set a ProblemFile option, so that the results
of running iss_solve are saved to disk.

% Note that StateLB and StateUB were defined previously.
Conf = iss_conf(StateLB, StateUB, ...

'ControlLB', ´0.01, ...
'ControlUB', 0.01, ...
'DiscountRate', 0.1, ...

31



'StateStepSize', (StateUB ´ StateLB) / 20, ...
'UserConstraintFunctionFile', 'fisheries_constraint', ...
'ProblemFile', 'fisheries');

B.3. Solving the fisheries problem. Now we use iss_solve to compute the solution
to the fisheries problem. 'fisheries_delta' 'fisheries_cost' are references to the
functions we created earlier. It is assumed that StateLB, StateUB and Conf were defined
in the current workspace, as described in the previous section.

iss_solve('fisheries_delta', 'fisheries_cost', ...
StateLB, StateUB, Conf);

Running this will save the problem and then solution into files fisheries_options.mat
and fisheries_solution.mat, respectively.

B.4. Checking the results. Here we plot some control rules and simulations in order
to see what the result returned by iss_solve looks like.
To plot control rules against state, we use iss_plot_contrule, as follows.

% ’fisheries’ is the problem file name.
iss_plot_contrule('fisheries', [60, NaN], ...

'VariableOfInterest', 2);

Here we have specified NaN instead of giving a second parameter, to make it clear that
the second parameter will be varied. In Figure 11 we show the result of running this
command for various values of fish biomass (x).14 We can see that in all cases, the control
policy involves reducing effort when effort is “high”, and increasing it when it is “low”.
The threshold between “low” or “high” increases, the more biomass there is. This fits
with intuition about how we would expect the fleet to manage the stock – fishing more
when there are more fish, and less when there are fewer.
We can now plot some simulations using this control rule, in order to see how the system
behaves when controlled in this way. To do so we use iss_plot_sim as follows.

% Add this in order to be able to plot all graphs together.
hold on

% Use the ’LineSpec’ option to change the colour of each simulation.
iss_plot_sim('fisheries', [78, 0.1], 'LineSpec', '-b');
iss_plot_sim('fisheries', [78, 0.9], 'LineSpec', '-c');
iss_plot_sim('fisheries', [582, 0.1], 'LineSpec', '-g');
iss_plot_sim('fisheries', [582, 0.9], 'LineSpec', '-m');

14Note that “x2”, as displayed in Figure 11 represents effort, e. The label is generated automatically
by InfsocSol.

32



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(a) x “ 60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(b) x “ 240

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(c) x “ 420

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(d) x “ 600

Figure 11. Controle rules for the fisheries problem using deterministic settings.

% Add a red dashed line to show where the SMBL is
subplot(3, 1, 1);
plot([0, 250], [60, 60], 'r--');

The results of this are displayed in Figure 12. We can see that the SMBL is avoided in
all cases except where the initial state involves high effort and low stocks. In this case it
appears that it is not possible, given the constraints of effort variation, to reduce effort
quickly enough to avoid crossing the SMBL.

B.5. Adding stochastic noise. In this section we alter the fisheries problem presented
in Section B.1 so that biomass, xptq becomes a stochastic, rather than a deterministic
process. For simplicity, the stochastic component does not vary in state or control size.
That is,

(23) dx “

(
rxx

(
1 ´

x
Lx

)
´ qxex

)
dt ` ndW,

33



50 100 150 200 250
0

200

400

600

x 1

50 100 150 200 250

0.2

0.4

0.6

0.8

1

x 2

50 100 150 200 250
−0.01

−0.005

0

0.005

0.01

u 1

t

Figure 12. Simulations of optimally controlled trajectories for the fisheries
problem using deterministic settings.

where n is a constant, and W is a Wiener process.15 We will set the value of n to 10.
In order to analyse this new problem in InfsocSol, we first need to define a modified delta
function, as follows.

function v = fisheries_delta_stoch(u,s,t)
% Extract the named values from the state vector
x = s(1);
e = s(2);

% Equation of motion for biomass
xdot = 0.4*x*(1 ´ x/600) ´ 0.5*e*x;

% Equation of motion for effort
edot = u;

% Combine.
v = [xdot, edot, 10, 0];

end

The only change is to include extra values in the return function, giving the size of the
stochastic noise in each dimension.
We now create a new configuration data-structure, using the modified delta function, and
passing the StochasticProblem option.

15It should be noted that this is not in fact a very good way of modelling a stochastic fish biomass
process, as it does not preclude a shock from causing biomass to become negative. It is presented here
purely as an illustration of InfsocSol’s capacities and is not supposed to present a realistic model.

34



Conf = iss_conf(StateLB, StateUB, ...
'ControlLB', ´0.01, ...
'ControlUB', 0.01, ...
'DiscountFactor', 0.1, ...
'StateStepSize', (StateUB ´ StateLB) / 20, ...
'StochasticProblem', 1, ...
'UserConstraintFunctionFile', 'fisheries_constraint', ...
'ProblemFile', 'fisheries_stoch');

This problem will also use a different ProblemFile setting than the previous one. Note that
we can continue to use the existing UserConstraintFunctionFile option under an “expected
value” interpretation, where we are constraining the expected next state.
As before, we can solve this problem as follows.

iss_solve('fisheries_delta_stoch', 'fisheries_cost', ...
StateLB, StateUB, Conf);

Plots of control rules and simulations are given in Figure 13 and Figure 14, respectively.
For the simulations, the default options were used (as described in Section 2.3) meaning
random noise has been generated, and only one simulation run was performed for each
starting point.

35



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(a) x “ 60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(b) x “ 240

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(c) x “ 420

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

u 1

x
2

(d) x “ 600

Figure 13. Controle rules for the fisheries problem with stochastic noise.

50 100 150 200 250
0

200

400

600

x 1

50 100 150 200 250

0.2

0.4

0.6

0.8

1

x 2

50 100 150 200 250
−0.01

−0.005

0

0.005

0.01

u 1

t

Figure 14. Simulations of optimally controlled trajectories for the fisheries
problem with stochastic noise.

36



C. Changes since version 2

This section lists changes to InfsocSol since the previous version, described in [2]. It can
be used as a guide for migrating code depending on the previous version.

1. The old “legacy” api has been deprecated in favour of the one described in this
document. See Section C.1 for details about these changes.

2. Introduction of a distinction between “high-level” and “low-level” apis, enabling
InfsocSol to be integrated into other software more easily, and without plotting
or saving to disk where this is not required.

3. Support for arbitrary length vector controls was introduced. This did not work in
InfsocSol2 due to a bug.

4. Support for parallel processing was introduced. See Section 8 for information.
5. Support for larger problems using sparse matrices to overcome matrix size limits

in MATLAB®. See Section 9 for details.
6. Initial support for GNU Octave. Functionality is largely the same, but with some

caveats. See Appendix D for details.

C.1. Legacy API. Prior to version 3, InfsocSol provided an api that more closely re-
sembled the one provided by SOCSol4L (see [6]). In version 3, this interface has been
deprecated in favour of the one described in this manual. However, in order to retain com-
patibility with code written for older versions of InfsocSol, the old api is still available
in InfsocSol as a set of wrappers around the new functions. This is called the “legacy
api”. The functions provided are:

‚ InfSOCSol (replaced by iss_solve),
‚ InfContRule (replaced by iss_plot_contrule),
‚ InfSim (replaced by iss_plot_sim) and
‚ InfValGraph (replaced by iss_plot_valgraph).

Calls to these functions should work as before (see [2] for details), with some caveats:

‚ The old .DPS and .DPP file formats are no longer supported, so InfsocSol3 will
not be able to open soc problem and solution files created with older versions.
Instead, the wrapper functions now use the new .MAT format.

‚ The Options parameter to InfSOCSol required numeric options to be encoded as
strings in version 2. String conversion is no longer performed in version 3, so these
options will not be understood if they are still encoded.

‚ The text output provided when running the functions is similar, but not the same.

D. Octave support

InfsocSol3 provides basic support for GNU Octave. This is done by utilising Octave’s
basic compatibility with MATLAB® and substituting the functionality that is only present
in MATLAB® with equivalent functionality in Octave. From the perspective of the end-
user, InfsocSol should usually function the same on either platform. However, there are
a number of issues to be aware of, which are listed here.

37

http://www.gnu.org/software/octave/


‚ Where possible, InfsocSol will use the nonlin_min function, which is part of the
“optim” package, available from Octave-Forge. See http://octave.sourceforge.
net/ for information about how to install this package.
The nonlin_min function provides a similar interface to MATLAB®’s fmincon func-
tion, including accepting most of the same optimization options as described in
Section 2.2.1. A notable difference however is that the set of algorithms available
to nonlin_min is not the same as for fmincon. InfsocSol will therefore use the
lm_feasible algorithm by default instead of active´set when running under Oc-
tave. Other algorithms can be specified using the Algorithm option, just as they
can under MATLAB®.

‚ When the “optim” package is not available, InfsocSol will fall-back on the (usu-
ally) slower built-in sqp function. This function has a different set of options from
both fmincon and nonlin_min and as such most options in InfsocSol relating to
fmincon (e.g., Algorithm; see Section 2.2.1) will have no effect. The exceptions
to this rule are the linear constraint options, UserConstraintFunctionFile, TolX and
MaxIter, which are mapped to the appropriate options in sqp.

‚ In order to use multiple CPUs under Octave, the “parallel” package from Octave-
Forge must be installed.

References
[1] Krawczyk, J. B. (2001) SOCSOL-II: A MATLAB package for approximating the solution to a

continuous-time infinite horizon stochastic optimal control problem. Working Paper SOCSol-II/S,
School of Economics and Finance, Victoria University of Wellington.

[2] Azzato, J. D. and Krawczyk, J. B. (2009), InfSOCSol2 – an updated MATLAB package for approxi-
mating the solution to a continuous-time infinite horizon stochastic optimal control problem with con-
trol and state constraints. Available at http://mpra.ub.uni-muenchen.de/17027/ on 03/09/2009.

[3] Krawczyk, J. B. (2001) Using a simple markovian approximation for the solution to continuous-time
infinite-horizon stochastic optimal control problems. Working Paper inf_1.5, School of Economics
and Finance, Victoria University of Wellington.

[4] Krawczyk, J. B. (2005) Numerical solutions to lump-sum pension fund problems that can yield
left-skewed fund return distributions. Deissenberg, C. and Hartl, R. F. (eds.), Optimal Control and
Dynamic Games, chap. 11, pp. 155–176, Springer. URL: http://www.vuw.ac.nz/staff/jacek_
krawczyk/somepapers/pens_fund_SS_ta.pdf.

[5] The MathWorks Inc. (1992) MATLABR⃝. High-Performance Numeric Computation and Visualization
Software.

[6] Azzato, J. D. and Krawczyk, J. B. (2006) SOCSol4L: An improved MATLAB® package for approxi-
mating the solution to a continuous-time stochastic optimal control problem. Working paper, School
of Economics and Finance, Victoria University of Wellington.

[7] Krawczyk, J. B. and Pharo, A. (2011) Viability Kernel Approximation, Analysis and Simulation
Application – VIKAASA Manual. SEF Working Paper 13/2011, Victoria University of Wellington.
URL: http://hdl.handle.net/10063/1878.

[8] Krawczyk, J. B. (2001) A markovian approximated solution to a portfolio management problem. Inf.
Technol. Econ. Manag., 1. URL: http://www.item.woiz.polsl.pl/issue/pdf/portitem.pdf.

[9] Krawczyk, J. B., Pharo, A., Serea, O. S., and Sinclair, S. (2013) Computation of viability kernels:
a case study of by-catch fisheries. Computational Management Science, 10, 365–396. URL: http:
//dx.doi.org/10.1007/s10287-013-0189-z, doi:10.1007/s10287-013-0189-z.

[10] Béné, C., Doyen, L., and Gabay, D. (2001) A viability analysis for a bio-economic model. Ecological
Economics, 36, 385–396.

[11] Schaefer, M. B. (1954) Some aspects of the dynamics of populations. Bull. Int. Am.
Trop. Tuna Comm., 1, 26–56. URL: http://www.iattc.org/PDFFiles2/Bulletins/
IATTC-Bulletin-Vol-1-No-2.pdf [cited 2013-08-05].

38

http://octave.sourceforge.net/
http://octave.sourceforge.net/
http://octave.sourceforge.net/
http://mpra.ub.uni-muenchen.de/17027/
http://www.vuw.ac.nz/staff/jacek_krawczyk/somepapers/pens_fund_SS_ta.pdf
http://www.vuw.ac.nz/staff/jacek_krawczyk/somepapers/pens_fund_SS_ta.pdf
http://hdl.handle.net/10063/1878
http://www.item.woiz.polsl.pl/issue/pdf/portitem.pdf
http://dx.doi.org/10.1007/s10287-013-0189-z
http://dx.doi.org/10.1007/s10287-013-0189-z
http://dx.doi.org/10.1007/s10287-013-0189-z
http://www.iattc.org/PDFFiles2/Bulletins/IATTC-Bulletin-Vol-1-No-2.pdf
http://www.iattc.org/PDFFiles2/Bulletins/IATTC-Bulletin-Vol-1-No-2.pdf


List of Figures

1 Optimal and approximated control rules for a simple unconstrained problem. 21

2 Optimal and approximated control rules for a simple unconstrained problem with
reduced jagginess. 22

3 Optimal and approximated trajectories for a simple unconstrained problem. 23

4 Optimal and approximated value functions for a simple unconstrained problem. 24

5 Approximately optimal control rules with a control constraint. 25

6 Approximately optimal state and control time profiles with a control constraint. 25

7 Approximately optimal value function with a control constraint. 26

8 Optimal and approximated value functions with a state constraint. 27

9 Approximately optimal state and control time profiles with a state constraint. 27

10 Optimal and approximated value functions with a state constraint. 28

11 Controle rules for the fisheries problem using deterministic settings. 33

12 Simulations of optimally controlled trajectories for the fisheries problem using
deterministic settings. 34

13 Controle rules for the fisheries problem with stochastic noise. 36

14 Simulations of optimally controlled trajectories for the fisheries problem with
stochastic noise. 36

39



Index
Functions

InfContRule, 12, 37
InfSim, 6, 37
InfSOCSol, 37
InfValGraph, 37
iss_conf, 3, 7–9, 13, 16, 20, 31, 35
iss_load_conf, 9, 15, 16
iss_load_solution, 16
iss_odm_control, 1, 2, 10, 12, 13
iss_plot_contrule, 1, 2, 6, 10–12, 15, 21,
32, 37

iss_plot_sim, 1, 2, 5, 6, 9, 10, 13, 22, 23,
27, 32, 37

iss_plot_valgraph, 1, 2, 5, 6, 10, 14–16, 23,
24, 27, 37

iss_save_conf, 15, 16
iss_save_solution, 16
iss_sim, 1, 2, 5–10, 13, 14, 16
iss_solve, 1, 3, 6, 7, 9–22, 24, 26, 31, 32, 35,
37

Options and Parameters
A, 3
Aeq, 3
Algorithm, 4, 5, 38
b, 3
beq, 3
Conf, 3, 4, 8–10, 12–16, 19, 20, 26, 30–32, 35
Control, 2, 3, 14
ControlDimension, 7
ControlLB, 7, 20
ControlUB, 7, 20
CostFunction, 2, 10, 14–16, 19
Debug, 7, 11
DeltaEvolution, 14
DeltaFunction, 2–4, 6, 10, 14–16, 19
DerivativeCheck, 4, 5
Diagnostics, 4
DiffMaxChange, 4, 5
DiffMinChange, 4, 5
DiscountRate, 7, 20
Display, 4
Errors, 10, 11, 18
InitialCondition, 12–15, 21–23
Iterations, 10
LargeScale, 4
LineSpec, 6, 12, 21, 22
MaxFunEvals, 4, 18, 21
MaxIter, 4, 38
MaxSQPIter, 4
Noise, 7
NoiseProb, 7
NoiseSteps, 7
NoisyVars, 7

NumberOfSimulations, 6, 22, 23
ODM, 10, 12, 14, 16
OutputFcn, 4, 5
PolicyIterations, 7
PoolSize, 5, 7, 16, 17
ProblemFile, 1, 7, 9, 10, 12, 13, 15, 16,
20–23, 31, 35

ScaleFactor, 6, 15, 23
SimulatedValue, 13, 14, 23
SimulationEnd, 6
SimulationTimeStep, 6, 14, 22, 23
StateEvolution, 14
StateLB, 3, 5, 8, 10, 12–15, 19, 20, 30, 32, 35
States, 5
StateStepSize, 3, 5, 20, 22, 27, 31
StateUB, 3, 5, 8, 10, 12–15, 19, 20, 30, 32, 35
StochasticProblem, 6, 34
StoppingTolerance, 7, 11
TimepathOfInterest, 6
TimeStep, 4, 5, 9, 20, 22, 27, 31
TolCon, 4
TolFun, 4, 18, 21
TolX, 4, 38
TransProbMin, 7, 17
UOptimal, 10
UseParallel, 4, 5
UserConstraintFunctionFile, 4, 26, 35, 38
UserSuppliedNoise, 6, 22
Value, 2, 3, 10
VariableOfInterest, 6, 12, 15, 21, 23
VariableOfInterestValues, 15, 23

40


	Introduction
	1. Basic problem specification
	2. Options and configuration
	2.1. Purpose
	2.2. Options
	2.3. Configuring InfSOCSol

	3. Solution of an optimal control problem
	3.1. Purpose
	3.2. Basic syntax
	3.3. High-level API
	3.4. Output

	4. Determination of optimal control rules
	4.1. Purpose
	4.2. High-level interface
	4.3. Low-level interface

	5. Simulation of trajectories
	5.1. Purpose
	5.2. Implementation
	5.3. High-level API
	5.4. Low-level API

	6. Determination of expected value
	6.1. Purpose
	6.2. Syntax

	7. Loading and saving
	7.1. Purpose

	8. Using multiple CPUs
	9. Large problems and sparse matrices
	10. Tweaking optimizer settings
	Appendices
	A. Simple example of usage
	A.1. Optimisation Problem
	A.2. Solution Syntax
	A.3. Retrieving results using the high-level API
	A.4. Adding Constraints

	B. An example of usage with a fisheries problem
	B.1. Basic model
	B.2. The fisheries problem in InfSOCSol
	B.3. Solving the fisheries problem
	B.4. Checking the results
	B.5. Adding stochastic noise

	C. Changes since version 2
	C.1. Legacy API

	D. Octave support
	References
	List of Figures
	Index

